《中国保健协会网》
由 中国保健协会保健品市场工作委员会 主办 快速导航  工作邮箱登录
首  页 | 行业聚焦 | 工作动态 | 市场监督 | 非常观点 | 媒体曝光 | 市场峰会 | 庶正康讯
政策法规 | 注册申报 | 批件搜索 | 市场调研 | 调研报告 | 展会信息 | 信用评价 | English 


互联网 www.chca.net.cn
中国保健行业历年十大事件 | 销售商俱乐部 | 《保健食品注册与备案管理办法》7月1日施行 保健食品原料目录(第一批)征求意见

升级课程:跟电商圈交流你得有点料

野蛮非先生 2018-7-25  

新零售时代,保健品的电商渠道正在飞速崛起,对大数据的处理与分析,将成为产品策划、市场营销的中坚力量。那如何切入这个活动满天飞的电商时代,为企业获得更好的收益和发展?

我们需要数据,需要一系列的数据支持运营更好的“输出”。毕竟每一个产品都会经历技术为王、产品为王、运营为王、商业模式为王的过程,电商行业的商业模式已经有人验证是可行的,剩下的就是如何更好的运营。

说回本文的重点——“数据”,你需要知道下面这些数据代表什么。

数据统计系统

如果说,一个电商平台要建设一套数据统计系统,一定少不了上面任何一个数据。大家都知道电商包罗万象,一个电商平台的诞生,所涵盖的基础模块非常多,关于数据统计的工作量可想而知。

在统计数据前,需要给各个模块添加数据埋点,所以必须清晰每个数据对应的含义,定下的规则避免后期反复修改,影响数据的准确性。

对于平台型电商而言,需要统计的数据大致分为平台数据与商家数据,接下来我们则一一为大家分享这些数据对应着什么。

平台数据:从上图可知,平台数据一般会统计“用户数据”、“流量数据”、“渠道数据”、“商家概况”、“商家数据”。

1
用户数据

作为平台方,我们关心的用户数据如上图所示,一边是来自社交平台的粉丝,一边是来自平台自身的用户。

关注数:指用户对(平台的)社交平台关注数,包括对微信,微博等的关注;

净增长粉丝数:指新增的粉丝量与流失的量之间的差额;

流失粉丝数:指流失的粉丝数;

环比增长率:同比上期,增长粉丝数的比例,公式算法:((这期-上期)/上期)*100%;

注册用户数:指已注册了平台账户的用户数;

会员数:指成为平台会员的用户数(各个平台规则不同,例京东会员则¥198/年);

非会员数:指未成为平台会员的用户数;

新注册用户:筛选期间内,同比此前新增的注册用户数;

日活跃用户:(一般对APP而言)以设备ID为依据,1天(00:00-24:00)之内,访问App的不重复用户数;

月活跃用户:(一般对APP而言)以设备ID为依据,指1月之内至少访问一次APP的独立用户数;

用户性别:用户性别,一般分为男,女,未知;

用户年龄:用户年龄;

用户地域:指用户的设备定位区域;

消费水平:指用户在平台消费后平台给与的等级划分(基础建设可先不计算这一数据);

渠道用户:指来自不同渠道的用户(例网红直播从快手引流至淘宝,则该部分用户为淘宝的渠道用户);

访问时段:指用户访问的平台的时间段分布。

2
流量数据


独立访客(UV):(一般针对H5/PC)指访问平台的一台电脑或客户端算为一个访客,00:00-24:00内相同的客户端只被计算一次;

页面浏览量(PV):(一般针对H5/PC)指页面访问量,每打开一次页面PV计数+1,刷新页面也是

访问次数:指用户从开始访问平台到最终离开平台,计为1次访问。若用户连续30分钟没有访问新页面和刷新页面,或者用户直接退出(关闭浏览器等),则定义为本次访问结束;

跳出率:指用户只访问了首页就离开的访问量与所产生总访问量的百分比;

访客地域:指用户访问平台时设备/客户端定位的区域;

访问页面:指用户访问的页面;

访问品类:指用户访问的商品品类;

访客年龄:指访问平台的用户的年龄;

访客支付转化:指用户在每一个页面的访问量的占比率(例访问首页100人,详情页50人,购物车30人,支付页10人,支付成功9人)。

3
渠道数据


广告投放数据:指平台投放广告数据(指广告曝光量、曝光人数、点击量等,此处不细化);

渠道分布数据:指平台各个渠道的分布情况;

渠道数量:指平台的渠道数量;

点击量:指从渠道导入的用户点击平台次数的累计;

导入UV:指从渠道导入流量的UV数据;

导入PV:指从渠道导入流量的PV数据;

导入访问次数:指从渠道导入流量的访问次数;

平均访问时长:指从渠道导入的用户的平均访问时长;

订单笔数:指从渠道导入的用户的总下单笔数;

付款笔数:指从渠道导入的用户的总付款笔数;

订单金额:指从渠道导入的用户的总下单金额;

付款金额:指从渠道导入的用户的总付款金额;

转化率:指从渠道导入的用户付款订单数与下单数的比率,订单转化率(计算公式:付款笔数/订单笔数);

跳出率:指从渠道导入的用户的跳出率。

4
商家概况


商家数量:指平台的商家总数量;

地域分布:指平台的商家区域分布(根据入驻时填写的地址统计);

品类分布:指平台的商家的品类分布概况(例家电数码100家,服装服饰5000家等分布情况);

商家类型:指平台的商家类型分布情况(例品牌店1000家,厂家200家,经销商300家);

投放模块:指商家在平台投放流量的模块;

投放金额分布:指商家在平台投放流量的金额分布;

投放占比:指投放流量的商家占比平台总商家数量。

商家数据


上面我们逐个介绍了平台统计数据的要点,我们接着讲商家统计数据的要点。

1
交易数据


下单笔数:指商家的下单笔数(可按某个商家筛选,不筛选则指整7个平台商家的下单笔数);

付款笔数:指商家的付款笔数(可按某个商家筛选,不筛选则指整个平台商家的下单笔数);

下单金额:指商家的下单金额(可按某个商家筛选,不筛选则指整个平台商家的下单笔数);

付款金额:指商家的付款金额(可按某个商家筛选,不筛选则指整个平台商家的下单笔数);

复购人数:指不小于1次在商家购买商品的用户累计总数;

订单状态分布:指订单状态的分布情况(例待支付50单,待发货60单等);

订单金额分布:指订单金额在多个区间范围内的分布情况(例订单均额在300-500的500单,500-1000的200单等);

订单渠道分布:指订单来源于不同渠道的分布情况;

订单地域分布:指订单的收货地址区域总体分布情况;

转化率:指用户付款订单数与下单数的比率,订单转化率(计算公式:付款笔数/订单笔数);

复购率:指用户购买次数大于1次的次数占比总用户购买次数(还有另一种算法,此处不细说);

支付率:指付款用户数占比下单用户数,订单支付率(计算公式:付款人数/下单人数);

支付金额:指用户在商家支付的金额总和;

支付方式:指用户在商家支付的方式总和(例支付宝、微信支付、信用卡支付等);

币种类型:指用户在商家消费支付的币种类型(例现金、积分、消费券等);

支付结果:指用户在商家消费支付的结果分布情况;

2
商品数据


SKU数量:指商家SKU的数量;

SKU销量:指商家SKU的销量;

SPU数量:指商家SPU的数量;

一级类目数量:指商家一级类目的数量;

二级类目数量:指商家二级类目的数量;

三级类目数量:指商家三级类目的数量;

品牌数据:指商品所属品牌的数据情况。

3
用户数据


商家-用户数据

下单用户:指在商家下单的用户数;

付款用户:指在商家付款的用户数;

会员数据:指商家的会员数据(会员数、会员画像等);

客户留存率:用户在某段时间内访问商家,经过一段时间后,仍然访问商家店铺的用户,被认作是留存用户。而留存率则是该部分用户占比此前的某段时间访问商家的用户数;

店铺收藏用户数:指收藏过商家店铺的用户数总和。

4
流量数据


访客数(UV):指访问商家的一台电脑或客户端算为一个访客。00:00-24:00内相同的客户端只被计算一次;

浏览量(PV):指商家页面访问量,每打开一次页面PV计数+1,刷新页面也是;

浏览次数:指用户从开始访问商家到最终离开商家,计为1次访问。若用户连续30分钟没有访问新页面和刷新页面,或者用户直接退出(关闭浏览器等),则定义为本次访问结束;

浏览时长:指用户浏览商家店铺的平均时长;

访问时段:指用户访问商家店铺的时间段分布情况;

访问品类:指用户访问商家店铺的商品品类分布情况;

分享次数:指用户分享商家店铺或商家商品的次数总和。

5
营收数据


总营业额:指商家的总营业额;

待结算金额:指商家等待结算的金额(有些平台会将资金控制在平台内,等待结算后才到账);

待退款金额:指商家店铺下待退款的金额;

已退款金额:指商家店铺下已成功退款的金额;

已到账金额:指商家已到账金额(一般用于提现,属于商家真实收入);

退款率:指商家收到退款的订单笔数与同期成功交易(付款)的订单笔数的比率。

6
物流数据


待发货数:指商家还未发货的订单数;

已发货数:指商家已经发货的订单数;

已收货数:指用户已经签收的订单数;

平均发货时长:指所有商家的平均发货速度(计算公式=所有商家发货时长/商家总数);

快递公司分布:指所有商家所使用的快递公司的分布情况;

未签收:指用户未签收的包裹数;

已签收:指用户已签收的包裹数;

已拒签:指用户拒签的包裹数;

待退回:指用户已申请退款,但包裹还未退回的包裹数;

已退回:指用户已经完成退货的包裹数;

签收时长统计:指所有用户的平均签收时长;

总结

到此我们就把所有基本的元素讲完了,如果你愿意花点时间阅读,你会发现这些数据并不难以理解,也不繁琐。作为电商PM,凡事都要能做到模块化,就以这个数据为例,将数据分块后,每一块的数据其实并不繁琐,所以我们只要记住一个模块,其他模块便能举一反三。

有人会问:即使看了这么多数据,也不知道怎么去建设一个数据统计系统。

其实很简单,这里的每一个模块都是并列的关系,在把模块关系确定下来后,用各种可视化的结果来丰富你的模块,例如下图所示:

这些数据网上都有,为什么又要重新写一遍,我觉得原因有两个:

其一,对于数据而言,人的大脑记忆力不够强,当你能够完整的整理一遍后,能够更有利于你清晰的理解和界定数据的规则;

其二,应该还是有很多童鞋需要这样一份完整的数据统计列表,在功能建设中,可以参考分享改进,也达到我的目的了。

本文来自人人都是产品经理 文/野蛮非先生







本站转载文章版权属原作者,如有版权疑问请致电010-83505145-212。加入保健协会请咨询010-83504221
中国保健协会市场工作委员会 © 2005-2018 版权所有 不得转载 E-mail:xiehui@chca.net.cn 传真:(86)10 83505146
地址:北京右内72号 万博商厦902室 电话:(86)10 83505146(调研业务、信息产品) 83502445(准入咨询) 83504221(协会事务) 83501235(公关事务)
工信部备案号:京ICP备13005185号 北京网聚无限提供网络带宽 公安网监备案号:京公网安备110102006241